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Abstract

Posterior implementation is a sparsely studied solution concept for mechanism design when

there are interdependent agent types. In posterior equilibrium, it is required that each agent’s

strategy is optimal with respect to the strategies played by their fellow agents for each possible

message profile. There are two main considerations of posterior implementation in the current

literature. First, Green and Laffont (1987) offer a geometric characterization of posterior im-

plementable social choice functions in two agent, binary collective decision problems. Then,

Niemeyer (2022) generalizes this analysis by considering binary collective decision problems

with any number n of finitely many agents, with the main insight being that posterior im-

plementable social choice functions are posterior implementable by score voting mechanisms.

In both cases, it is assumed that all messages sent by agents are publicly observable. In this

paper, we examine cases where only some aspects of agent messages are observable. Namely,

we consider a case where agents submit their messages to a a central agent, or collector, who

then uses these reports to make a public choice. Agents, therefore, form posterior beliefs re-

garding the types of their fellow agents based on this public choice, not on the granular message

reports of their fellow agents. This, in turn, creates coarser agent posterior beliefs. We thus

define an amended notion of posterior implementation, which we denote private posterior im-

plementation, and for this, obtain a complete characterization of the set of privately posterior

implementable decision rules in n-person binary collective decision problems. We also consider

non-binary collective decision problems, where the public choice is a parameter, such as a price

vector, and discuss the challenges that arise in such settings.
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1 Introduction

The use of collective decision-making procedures are rife in all spheres of human interaction.

1.1 Related Literature

2 Preliminaries

In the forthcoming section, we formalize a standard binary collective decision problem with

n agents.

2.1 The Classical Model

A group of n agents are deciding whether to accept or reject a given alternative. We index the

set of agents by i ∈ N = {1, 2, .., n}. Each agent i has a value function, vi(θ), where θ ∈ Θ

is some unknown state. The state θ has n elements (θ1, θ2, ...θn) and each agent i observes

only θi, known as agent i’s type. This is to say that each agent has partial information about

the payoff-relevant state. We assume that θi is some real number drawn from a compact

interval Θi, an interval that we normalize to [0, 1], without loss of generality. This yields the

following construction of the normalized state space:

Θ =
n∏

i=1

Θi = [0, 1]n. (1)

We assume that states θ ∈ Θ are distributed according to a probability measure µ(·) ∈ ∆(Θ)

that it has a continuously differentiable and strictly positive density function f .

To make this collective binary choice, a mechanism is introduced. The mechanism of

choice is one without transfers. That is, the agents use a mechanism composed of a collection

of measurable message spacesMi and a measurable allocation or outcome function ψ :M →

[0, 1] which assigns an acceptance probability to each message profile m ∈ M , where we
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define M :

M =
n∏

i=1

Mi. (2)

Taken together, a mechanism without transfers is the pair (M,ψ) and it induces a game

of incomplete information in which agents attempt to maximize their expected utilities.

Before proceeding with considerations of equilibria in this setting, we recount the technical

assumptions that are taken as given in both Green and Laffont (1987) and Niemeyer (2022).

2.2 Technical Assumptions

In the two primary works on posterior implementability by Green and Laffont (1987) and

Niemeyer (2022), the following three assumptions are employed:

(i) Monotonicity : For each agent i, the gradient of vi(θ), denoted ∇vi(θ) : Θ → Rn is

strictly positive.

(ii) Heterongeneity : vi(θ) = 0 ∀i ∈ N =⇒
(
∇vi(θ)

)
i∈N

are not collinear.

(iii) Affiliation: f(θ)f(θ′) ≤ f(θ ∧ θ′)f(θ ∨ θ′), where ∧ and ∨ denote the component-wise

maximimum and minimum, respectively.

There are intuitive underpinnings and implications to the above assumptions that we

summarize in Appendix A. In addition, at each point during the remainder of the paper

where an above assumption is employed, we will make a clear note of this.

2.3 Public Posterior Equilibrium in Two-Agent Problems

As was made clear in Section 1.1, considerations of public1posterior implementation differ

greatly as the number agents in a given setting changes from n = 2 to n ≥ 3. In this section,

1We note that the existing notions of posterior implementation will henceforth be referred to as public
posterior implementation, which accounts for the fact that they are solution concepts that allow for the
public observation of individual agent messages. This, of course, is a facet of posterior implementation that
we do away with throughout most of the paper, when we introduce our novel notion of private posterior
implementation, where agent messages are no longer publicly observable.
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we consider notions of posterior implmentation in n = 2 agent settings, first considered by

Green and Laffont (1987). Note, the general model given above considers the case of n

agents. The function of this section is to plot the development of the concept of posterior

implementation, so as to better orient the introduction of private posterior implementation

in later sections. For the most part, the analysis done in this paper will concern settings

with n ≥ 3 agents.

To begin, recall our construction of a mechanism without transfers from Section 2.1.

Suppose we now restrict the collection of measurable message spaces M to reflect the two-

player environment. That is:

M =M1 ×M2, (3)

where M1 and M2 correspond to the message spaces for player 1 and player 2, respectively.

We can therefore explicitly construct the two-player mechanism to be the the following

triple (M1,M2, ψ), where ψ is the mapping ψ : (M1 ×M2) → [0, 1], and, as above, yields an

acceptance probability for each message profile m ∈ (M1 ×M2).

From here, we also formalize the notion of a strategy in this environment. We say that a

strategy of agent i is a measurable function from Θi to the family of distributions over Mi.

We express this idea as the conditional distributions si(mi|θi). Using this understanding of

a strategy in the observable-message environment, we give the recount Green and Laffont’s

notion of a social choice function, which allows us to then begin considering their formalized

definitions of posterior optimality and implementation:

Definition 1 (Green and Laffont, 1987) Suppose s1 and s2 are stragtegies used by agents

in the mechanism without transfers given by (M1,M2, ψ). Then, the social choice function

ϕ : (Θ1 ×Θ2) → [0, 1] is given explicitly as:

ϕ(θ1, θ2) =

∫
M1×M2

ψ(m1,m2)ds1(m1|θ1)ds2(m2, θ2), (4)

which yields the acceptance probability of a given alternative when (θ1, θ2) is the information
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received by the agents.

From this, we can begin a gradual construction of Green and Laffont’s definition of

posterior equilibrium and implementation, followed by the main characterization theorem

for the two-agent setting. We proceed with an general notion of optimality:

Definition 2 (Green and Laffont, 1987) Suppose the given strategy s2 is fixed. We say that

the message, or report, m1 ∈M1 is optimal for Player 1 if:

m1 ∈ argmax

∫
Θ2

∫
M2

v1(θ1, θ2)ψ(m1,m2)ds2(m2|θ2)µ(dθ2|θ1) (5)

Then, a strategy for Player 1 is optimal if for almost everywhere (a.e.) θ1 ∈ Θ1, Player 1’s

strategy s1(·|θ1) assigns a probablility of zero to the set of non-optimal messages.

Using the above notion of optimal messages and strategies, we say that for a given

strategy s1, if s2 is an optimal strategy for Player 2 and s1 is an optimal strategy for Player

1, then (s1, s2) constitutes a Bayesian equilibrium of the mechanism (M1,M2, ψ). Further,

we say that the social choice function ϕ is Bayesian incentive compatible. Finally, when

there exists a mechanism (M1,M2, ψ) and a Bayesian equilibrium (s1, s2), we say that that

the social choice function ϕ is implementable. We refine these notions of optimality and

implementation to arrive at Green and Laffont’s definition of posterior optimality.

Definition 3 (Green and Laffont, 1987) Suppose ϕ is implemented via the mechanism

(M1,M2, ψ) in Bayesian equilibrium (s1, s2). Let µ(θ2|m2, θ1) and µ(θ1|m1, θ2) denote the

conditional distributions that the two players hold about each other’s types after observing

the other’s choice of mi. Then, we say that the pair of strategies (s1, s2) is posterior optimal

if:

m1 ∈ argmax

∫
Θ2

v1(θ1, θ2)ψ(m
′
1,m2)µ(dθ2|m2, θ1) (6)

m2 ∈ argmax

∫
Θ1

v2(θ1, θ2)ψ(m1,m
′
2)µ(dθ1|m1, θ2) (7)

over m′
1 ∈M1 and m′

2 ∈M2, respectively.
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We further say that the social choice function ϕ is posterior implementable if it is imple-

mentable via the mechanism (M1,M2, ψ) with posterior optimal strategies (s1, s2).

This, taken with the previous collection of definitions, characterizes Green and Laffont’s

two-agent construction. From here, we recall the central characterization theorem from their

work, which amounts to a constructive geometric analysis of the two-agent environment. The

result is given below, without proof:

Theorem 1 (Green and Laffont, 1987) Any posterior-implementable social choice function

ϕ is such that there exists a step function ξ and ϕ(θ1, θ2) = ϕ+ if (θ1, θ2) lies above ξ and

ϕ(θ1, θ2) = ϕ− if (θ1, θ2) lies below ξ, where ϕ+ and ϕ− are two constant values of ϕ.

Simply, Green and Laffont’s geometric characterization of posterior implementability in n =

2 agent binary collective decision problems is as follows: Any posterior implementable social

choice function is such that there exists a decreasing step function that partitions the type

space into two distinct regions, on each of which the social choice is a constant value. We

offer a graphical example of this in the figure below:
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Θ1

Θ2

Reject

Accept

Figure 1: An illustration of Green and Laffont’s central geometric result. The step function

partitions the type space into two regions, on which the social choice function is constant.

This graphically represents a posterior-implementable social choice function.

This concludes our consideration of the two-agent agent environment, offered by Green

and Laffont (1987). Their analysis is one that relies heavily upon graphical intuition and

geometric arguments that are unique to this refined two-player setting. We will proceed,

now, to recount the general n agent case, which will complete our work in grounding the

reader in the more classical notions of public posterior implementation, before beginning our

discussion of private posterior implementation.

2.4 Public Posterior Equilibrium in n Agent Problems

We now return to the more general setting described by the model in Section 2.1. Instead

of confining the number of agents to strictly two, we consider the case for any finite number

n agents. Niemeyer (2022) generalizes the work of Green and Laffont to the n agent set-

ting, completing the characterization of classical (public) posterior implementation in binary
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collective decision problems.

In this section, we will revisit a collection of definitions that were offered in Section 2.4 in

a manner that may appear redundant, but it is only in an effort to make clear the difference

in approaches between the two-player and n-agent settings. It is important to note that,

in our introduction and analysis of private posterior implementation, we use an analytical

framework most similar to the Niemeyer construction we are about to revisit. These two

separate constructions, the Green-Laffont and the Niemeyer frameworks, serve to show how

unique the geometric characterization of the two-agent case is, relative to the analysis of the

n agent case. We proceed with Niemeyer’s construction below.

Once more, we revisit the notion of a strategy in this more general environment. A

strategy for agent i in the mechanism (M,ψ), where M =
∏n

i=1Mi, is the map2 σi : Θi →

∆(Mi). Next, let µ(· | θi) ∈ ∆(Θ−i) be the belief that some agent i holds about the

types of other players when her own type is θi. Then, when agent i observes the strategies

of her fellow agents σ−i and thus their messages m−i ∈ M−i, she holds a posterior belief

µ(· | θi,m−i) ∈ ∆(Θ−i). It is important to note that her beliefs about other agents’ types

are conditioned on her own type and the messages submitted by her fellow agents. We also

assume that an agent’s posterior beliefs as constructed above are derived via Bayes’ rule in

almost every case.

From this, we get a definition that aids in our reconstruction of Niemeyer’s n-person

notion of posterior equilibrium:

Definition 4 The posterior expected valuation of agent i is given as:

Vi(θi|m−i) =

∫
Θ−i

vi(θi, θ−i)µ(dθ−i|θi,m−i) (8)

conditioned on m−i and when θi is her type.

From this, we can offer Niemeyer’s notion of (public) posterior equilibrium in n-person

2In the spirit of technicality, a strategy σ is a Markov kernel, which we define in the mathematical portion
of the appendix.
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collective decision probelms:

Definition 5 A strategy profile σ = (σ)i∈N in the mechanism (M,ψ), where M is a mea-

surable message space and ψ is a measurable outcome function ψ : M → [0, 1], is a public

posterior equilibrium if for all ı ∈ N , θi ∈ Θi, m−i ∈M−i and m̃i ∈Mi

Vi(θi|m−i)ψ(σi(θi), σ−i(θ−i)) ≥ Vi(θi|m−i)ψ(m̃i, σ−i(θ−i)).

Simply, a strategy profile σ is in a posterior equilibrium if each σi is optimal against the

strategies σ−i of other agents for every possible message profile m−i.

Using this grounding in Niemeyer’s conception of posterior optimality, we begin building

towards the central characterization theorem of the n-person environment. To do this, we

begin by recalling the general notion of score voting mechanisms:

Definition 6 A mechanism (M,ψ) is a score voting mechanism if

1. for each i ∈ N , Mi = {1, ..., |Mi|} is a set of consecutive integers

2. there is some quota q ∈ Z and real numbers 0 ≤ r < a ≤ 1 such that

ψ(m) =


a if

∑n
i=1mi > q

r otherwise

(9)

3. each agent i ∈ N has at most one veto message m̄i ∈ Mi such that ψ(m̄i) = a and at

most one veto message
¯
mi ∈Mi such that ψ(

¯
mi) = r.

There exist a few notable classes of score voting mechanisms, namely i-dictatorship, unan-

mity for acceptance or rejection, simple majority, and sub-or supermajority mechanisms. We

offer a formal definition of these, and others, in Appendix A.

Using this notion of score voting mechanisms, we can now proceed to offer the central

characterization theorem of the n agent environment, from Niemeyer:
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Theorem 2 (Niemeyer, 2022) Let n ≥ 3. A responsive3social choice function is posterior

implementable if and only if it is posterior implementable by score voting in pure surjective4

strategies.

We offer a reconstruction of this proof, as well as valuable intuition regarding the equivalence

between score voting implementation and posterior implementation in Appendix B.

This central result from Niemeyer’s characterization of the n-person environment provides

the basis upon which we begin our novel framework of private posterior implementation.

3 Introducing Private Posterior Implementation

In the forthcoming section, we introduce our novel concept of private posterior implementa-

tion. To begin with, the amended setting, including the notion of a central agent or collector,

is formalized. From this new model, we introduce the formal definition of private posterior

equilibrium, and state our first result that is confined to the two agent setting.

3.1 The Central Agent Model

Once more, a group of n agents are deciding whether to accept or reject a given alternative.

The formalities, notation, and assumptions from the public message model are maintained

in this setting. See Section 2.1 for explicit delineations of these things.

Now, suppose we introduce an additional agent or piece of collecting technology (either

of which, clearly, do not participate in the game of incomplete information induced by the

mechanism) to which each of the participating agents privately submit their messages. This

means that each agent no longer observes the reports or messages of their fellow agents, as

they all simply make their reports privately and directly to this central agent. We consider

this addition concretely, given in the timing of this amended setting:

3A social choice function ϕ is responsive if it can only be implemented by giving each agent at least two
messages.

4A strategy profile σ : Θ → M is said to be surjective if for every message profile m ∈ M there exists a
strategy profile θ ∈ Θ such that σ(θ) = m.
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1. The designer commits to the mechanism (M,ψ).

2. Each agent i submits their message mi to the central agent. The central agent and the

central agent alone observes these messages.

3. The central agent uses these message submissions to select a public choice (i.e. to

accept or reject the given alternative).

From this construction, agents learn information and draw inferences about the types of

their fellow agents based on the central agent’s selection, not on the individual messages

submitted. For this reason, we classify posterior implementation in this setting as private

posterior implementation. As a result of not directly observing the messages, agents form less

refined posterior distributions about the types of their fellow agents in this environment. We

formalize the concept of private posterior implementation and discuss these coarser posterior

distribution next.

3.2 On the Concept of Private Posterior Implementation

Prior to defining private posterior implementation, we begin by discussing how to specify

the posterior beliefs of agents after observing the equilibrium behavior of their fellow agents.

As above, we maintain that µ( · |θi) ∈ ∆(Θ−i) denotes the belief some given agent

i holds about the types of other players when her own type is θi. Then, recall that we

define strategies to be the map σi : Θi → Mi. In the public message environment, an

agent observes these strategies and thus messages of her fellow agents, forming posterior

beliefs µ( · | θi,m−i), about the types of her fellow agents, conditioned on her own type and

the messages reported by her fellow agents. With the introduction of the central agent and

private messages, agents lose the ability to condition their posterior beliefs about the types of

their fellow agents on messages. Instead, the central agent (henceforth denoted CA) privately

observes each agent’s individual message mi and uses them to make a public choice, which

we denote CA(m). Therefore, in this novel private message environment, agents condition
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their posterior beliefs about their fellow agents’ types on their own type and the public choice

CA(m) made by the central agent, which is given explicitly as µ

(
·
∣∣∣∣ θi CA(m)

)
. We offer

it explicitly in definitional form for ease of reference below:

Definition 7 The private posterior belief that an agent i holds about the types of her fellow

agents is given by:

µ

(
·
∣∣∣∣ θi, CA(m)

)
, (10)

where µ is the probability measure which θi is distributed according to, θi is agent i’s own

type, and CA(m) is the public choice made by the central agent after observing the private

messages of all agents.5

From this, we also get an amended notion of posterior expected valuation, given below:

Definition 8 Let:

Vi

(
θi | CA(m)

)
=

∫
Θ−i

vi(θi, θ−i)µ

(
dθ−i

∣∣∣∣ θi, CA(m)

)
(11)

define the private posterior expected valuation of an agent i, where vi(·) denotes the value

function of a given agent i.

We can thus define the notion of public posterior equilibrium using Definition 8:

Definition 9 A strategy profile σ = (σ)i∈N in the mechanism (M,ψ), where M is a mea-

surable message space and ψ is a measurable outcome function ψ : M → [0, 1], is a private

posterior equilibrium if for all i ∈ N , θi ∈ Θi, m−i ∈M−i and m̃i ∈Mi

Vi

(
θi | CA(m)

)
ψ(σi(θi), σ−i(θ−i)) ≥ Vi

(
θi | CA(m)

)
ψ(m̃i, σ−i(θ−i)).

In contrast to Green and Laffont and Niemyer’s classical (public) posterior equilibrium which

requires that the strategy σi of each agent i is optimal against the strategies σ−i of other

5In keeping with the n-person public message environment from Niemeyer (2022), we assume private
posterior beliefs are derived via Bayes’ rule when it is possible to do so.
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agents for every possible message profilem−i, the above notion of public posterior equilibrium

only requires that the strategy σi of each agent i is optimal against the strategies σ−i of other

agents for the public choice CA(m) made by the central agent. In our general characterization

of this notion of private posterior equilibrium in Section 5, it will become apparent that it

can be viewed as the most extreme, or most private version of an equilibrium condition

that is the result of a coarsening procedure, where the message space becomes less and less

publicly observable by the introduction of lotteries over available information. See Section

5.1.

Further, we let the map given by ϕ : Θ → [0, 1] be called the social choice function,

which assigns an acceptance probability to every state θ ∈ Θ. Taken together with the

mechanism (M,ψ), the collection (M,ψ, σ) is called an implementation when ψ ◦ σ = σ

almost everywhere. Most particularly, when σ constitutes a public posterior equilibrium, we

call (M,ψ, σ) a private posterior implementation, and ϕ private posterior implementable.

Remark 1 As is true in both of the public settings (two agents and n agents), the revelation

principle, in a standard sense, does not hold in cases of private posterior implementation.

The above analysis is the result of the following argument, and was first made by Niemeyer.

It, however, also holds in the case of public posterior implementability. Suppose some private

posterior implementable social choice function is private posterior implementable via a direct

revelation mechanism where truth-telling is optimal. This sort of mechanism in the given

setting perfectly reveals the types of each agent to every other agent, such that truth-telling

is a private posterior equilibrium if and only if truth-telling is an ex-post equilibrium. From

Feng, Niemeyer, and Wu (2022), we know that ex-post implementable social choice functions

are constant, which completes the restructuring of the argument for why the revelation

principle does not generally hold in private posterior implementation in the given setting.
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4 Coarse Information Structures

We proceed with our general characterization of private posterior implementation. To do

this, we consider a process of informational coarsening, which allows us to use the classical

notion of public posterior implementation as our starting point and gradually show a pro-

gression towards private implementation. That is, we interpret public (classical) posterior

implementation and private posterior implementation as the relative extremes on a spec-

trum of informational publicity. On the one hand, the classical notion of public posterior

implementation can be characterized by its perfectly public message space (i.e. each granular

and individual message is publicly observable by each agent), while private posterior imple-

mentation is characterized by its perfectly private message space (i.e. individual messages

are not observable to any agents, as is the case in the central agent environment). The

region between these two notions of posterior implementation can be characterized by coarse

information structures, which can be interpreted as lotteries over available information that

are included in the mechanism. We formalize these notions in the forthcoming subsections,

but consider the diagram below as a helpful overview of this:

Perfectly Public

Message Space

Perfectly Private

Message Space

µ(θ−i | θi,m−i) µ(θ−i | θi, CA(m))
Coarse Information Structures

Figure 2: A depiction of private versus public posterior implementation, with the coarse

information structures characterizing the region between the two.

From Figure 2, we get a preview of the arguments and characterizations that we will

make in the forthcoming sections, namely how we will introduce informational coarseness

to the perfectly public message space through lotteries over available information, and in-
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evitably, through this coarsening procedure, arrive at a characterization of private posterior

implementation.

4.1 Formalization

We begin by formalizing some of the concepts mentioned above, particularly the notion

of public posterior implementation and private posterior implementation existing as the

extrema on a spectrum of informational publicity. We characterize them as extrema using

the terms perfectly public and perfectly private, respectively. We offer their formal definitions

below, beginning with the notion of perfectly public:

Definition 10 A conditional distribution of posterior beliefs µ(· | θi,m−i) ∈ ∆(Θ−i) is called

perfectly public if each posterior belief can be conditioned on all reported messages. That is,

the entirety of the message space is publicly observable to each agent.

Next, we consider the notion of perfectly private:

Definition 11 A conditional distribution of posterior beliefs µ(· | θi, CA(m)) ∈ ∆(Θ−i) is

called perfectly private if no aspect of the message space is publicly observable. That is, the

only available information upon which agents can condition their posterior beliefs are their

own types and the public choice.

We have thus formalized the concept of a perfectly public versus a perfectly private en-

vironment. Simply, the perfectly public environment corresponds to the Niemeyer setting,

while the perfectly private environment corresponds to the central agent setting discussed

in Section 3.1. Inevitably, we obtain a general characterization for private posterior imple-

mentable social choice functions, i.e. we obtain a general characterization of the environment

with a perfectly private message space. However, in order to begin our characterization of

the perfectly private case, we proceed by considering a series of interim settings, namely

when the message spaces are partially observable in a public sense. To do this, we introduce

the concept of informational coarseness, which presents a means by which we can randomize
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the subset of the message space that is publicly observable, and thus engage in an analysis

of the interim dynamics of posterior implementation. This interim analysis using coarse

information structures founds the basis upon which we consider private posterior implemen-

tation:

Definition 12 A coarse information structure consists of a collection of measurable mes-

sage spaces M =
∏n

i=1Mi and a measurable function φ : M → [0, 1]n, which maps the

collection of message spaces to a publicity probability, which corresponds to the probability

that a given message space is publicly observable. Together, the pair (M,φ) are called a

coarse information structure.

From this, a natural course of action to begin our general characterization is to define

two fairly trivial coarse information structures, namely by ascribing a sort of deterministic

coarse information structure to both the perfectly public and perfectly private message space

environments. Not only does this provide a constructive baseline upon which we will begin

making more general arguments regarding private implementation, it provides an opportu-

nity to explicitly examine how coarse information structures function and operate within a

given mechanism.

Consider, first, the case of a perfectly public message space environment with n agents,

the Niemeyer construction, where every message submitted is publicly observable to each

agent. The mechanism (M,ψ) is used to make the collective binary choice and the coarse

information structure (M,φ) describes the publicity probability of each message profile,

where φ is the measurable function given by the mapping φ : M → [0, 1]n. Suppose m

denotes an arbitrary message profile. Explicitly, in the case of a perfectly public message
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space, the coarse information structure is described by the following result:

M =
n∏

i=1

Mi φ(m) =



1.0

1.0

...

1.0


, (12)

where the output of the mapping given by φ holds for each m ∈ M . Simply, in a perfectly

public message space environment, the coarse information structure is characterized by a

φ(·) function that maps each message profile to a publicity probability equal to 1, which is

to say that each message profile is always and entirely public and observable to every agent.

As the reader can infer, a correspondingly trivial coarse information structure can describe

the perfectly private message space environment i.e. the central agent model, which we give

below:

M =
n∏

i=1

Mi φ(m) =



0

0

...

0


, (13)

where, once more, the φ(·) mapping holds for each possible message profile m ∈ M . Here,

(13) describes the perfectly private nature of the central agent mode, where each message

profile is entirely and always unobservable to every agent, which is quantified by the zero

probability that is assigned to every possible message profile.

Taken together, we have offered an explicit characterization of either ends of the pub-

licity spectrum offered in Figure 2. They are, as noted, the trivial cases of informational

coarseness–the binary cases of when a message space is either entirely observable or en-

tirely not. In the interim cases of informational coarseness that exist between these two

extrema, the entries in the output column vector of the φ(·) mapping are probabilities

p1, p2, ..., pn ∈ (0, 1) that describe the interim probabilities of a given message profile being
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publicly observable to each agent.

We are now equipped with a formal construction that allows us to deviate from the

perfectly public nature of Niemeyer’s environment, and analyze how characterizations of

posterior implementation evolve as we privatize portions of the message space through prob-

abilistically limiting the publicity of message profiles to each agent. In order to begin this

analysis, we first consider informational coarseness in the context of a more familiar, but

closely related solution concept: ex post implementation. In fact, a recent result on the

limitations of ex post implementation is crucial in Niemeyer’s proof of his score voting char-

acterization of n-person public posterior implementation. Thus, our analysis of informational

coarseness as it relates to ex post implementation makes a path towards a characterization

of private posterior implementation much clearer.

5 On Ex Post Implementation

We proceed by recounting crucial work on the impossibility of ex post implementation by

Jehiel et al. (2006) and Feng, Niemeyer, and Wu (2022) in collective decision-making envi-

ronments.

6 Appendix

The forthcoming appendix includes a collection of omitted proofs and technical remarks

from the main text, as well as a series of examples, with visualizations of implementation in

two-agent settings.
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6.1

6.2 On the Derivation of Private Posterior Beliefs

6.3 Notes on Ex-Post Impossibility Results

6.4 Example

To aid in the development of intuition, we revert our attention back to the two-agent setting,

and consider a particular example. In this way, we familiarize the reader with the practical

workings of our novel notion of private posterior equilibrium, and perhaps more importantly,

how it is situated relative to other more familiar solution concepts, like Bayesian, ex-post,

and public posterior equilibrium. This provides a valuable sort of intuition prior to our

discussion of results specific to private posterior implementation.

6.4.1 The Setting

Suppose that n = 2 agents are deciding whether to accept or reject some given alternative.

Assume that ∀i ∈ N , the type space is defined according to Θi = [−1, 1] and the individual

types θi are uniformly distributed along the same interval: θi ∼ U [−1, 1]. Further, the

valuations for each agent i are given by:

vi(θi, θj) = αθi + (1− α)θj (14)

where α ∈ (1
2
, 1). We note that agent i can observe θi but not θj, meaning that each agent

only partial information about the realized payoff-relevant state. We can thus interpret α as

the parameter that captures the degree to which a given agent’s valuation depends on the

private information of his fellow agent(s). We call environments of the form given in (12) an

interdependent value environment.
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Then, we can define the joint welfare w(θi, θj) in the two agent setting as follows:

w(θi, θj) = vi(θi, θj) + vi(θi, θj) (15)

= [αθi + (1− α)θj] + [αθj + (1− α)θi] (16)

= θi + θj. (17)

Under a socially optimal outcome, we necessarily have that:

w(θi, θj) = θi + θj ≥ 0. (18)

We thus characterize the socially optimal region as follows:

-1 1

-1

1

Θ1

Θ2

Figure 3: The socially optimal acceptance region in a two-player binary collective decision

problem, where the region is given by the inequality w(θi,j ) ≥ 0.

In addition, in each of the following iterations of this example, we assume that the
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designer commits to the following mechanism without transfers: (M,ψ) where Mi = {0, 1}

for each i ∈ N and ψ :M → [0, 1] is given as:

ψ(m) =


a if

∑n
i=1mi > 1

r otherwise

(19)

where 0 ≤ r < a ≤ 1. This sort of mechanism is a type of score voting mechanism known as

unanimity for acceptance (rejection).

In the forthcoming subsections, we illustrate how our novel notion of private posterior

implementation relates to Bayesian, ex-post, and public posterior equilibrium in this two-

agent case. It provides a valuable practical lens to bear in mind as we begin our general

characterization of the private message (central agent) environment.

6.4.2 Bayes-Nash Equilibrium

We begin by introducing a formal definition:

Definition 13 A strategy profile σ = (σ)i∈N in the mechanism (M,ψ), where M is a mea-

surable message space and ψ is a measurable outcome function ψ : M → [0, 1], is a Bayes-

Nash equilibrium if for all i ∈ N , θ ∈ Θ, and m̃i ∈Mi, we have

∫
Θ−i

vi(θi, θ−i)ψ(σi(θi), σ−i(θ−i))µ(dθ−i|θi) ≥
∫
Θ−i

vi(θi, θ−i)ψ(m̃i, σ−i(θ−i))µ(dθ−i|θi) (20)

where µ is a probability measure that distributes states θ ∈ Θ.

As this section is primarily an exercise in computation, we use the above Bayesian equilibrium

conditions to construct the following maximization problem:

sup
σ1(θ1),σ2(θ2)

E
[
w(θ1, θ2)

]
(21)
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subject to: ∫
Θ2

[αθ1 + (1− α)θ2]ψ(σ1(θ1), σ2(θ2))µ(dθ2|θ1)

≥
∫
Θ2

[αθ1 + (1− α)θ2]ψ(m̃1, σ2(θ2))µ(dθ2|θ1)
(22)

∫
Θ1

[αθ2 + (1− α)θ1]ψ(σ1(θ1), σ2(θ2))µ(dθ1|θ2)

≥
∫
Θ1

[αθ2 + (1− α)θ1]ψ(σ1(θ1), m̃2)µ(dθ1|θ2),
(23)

where (20) and (21) correspond to each agent’s Bayesian incentive compatibility constraint.

In this way, (19)-(21) characterize the Bayes-Nash equilibrium optimization problem in this

two-agent example.

6.4.3 Ex-Post Equilibrium

We next consider the familiar solution concept of ex-post implementation, which is formally

given as follows:

Definition 14 A strategy profile σ = (σ)i∈N in the mechanism (M,ψ), where M is a mea-

surable message space and ψ is a measurable outcome function ψ :M → [0, 1], is an ex post

equilibrium if for all i ∈ N , θ ∈ Θ, m̃i ∈Mi, we have

vi(θi, θ−i(θ−i))ψ(σi(θi), σ−i(θ−i)) ≥ vi(θi, θ−i(θ−i))ψ(m̃i, σ−i(θ−i))

In keeping with the previous subsection, we compute the ex-post equilibrium by solving a

constrained optimization problem, given below:

sup
σ1(θ1),σ2(θ2)

E
[
w(θ1, θ2)

]
(24)

subject to:

[αθ1 + (1− α)θ2]ψ(σ1(θ1), σ2(θ2)) ≥ [αθ1 + (1− α)θ2]ψ(m̃1, σ2(θ2)) (25)
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[αθ2 + (1− α)θ1]ψ(σ1(θ1), σ2(θ2)) ≥ [αθ2 + (1− α)θ1]ψ(m̃1, σ2(θ2)) (26)

6.4.4 Classical (Public) Posterior Equilibrium

Next, we observe how the classical notion of posterior implementation is situated with respect

to the two previous solution concepts. First, we define the following:

Definition 15 Let

Vi(θi|m−i) =

∫
Θ−i

vi(θi, θ−i)µ(dθ−i|θi,m−i)

denote the posterior expected valuation of agent i given messages m−i when she is of type θi.

From this, we get the formal notion of classical posterior equilibrium:

Explicitly in the specific environment described above, the posterior optimality condition

is written as:

∫ 1

0

[αθi+(1−α)θj]µ(dθ−i|θi,m−i)ψ(σi(θi), σ−i(θ−i)) ≥
∫ 1

0

[αθi+(1−α)θj]µ(dθ−i|θi,m−i)ψ(m̃i, σ−i(θ−i))

(27)

=⇒
∫ 1

0

[αθi + (1− α)θj]µ(dθ−i|θi,m−i)

[
ψ(σi(θi), σ−i(θ−i))− ψ(m̃i, σ−i(θ−i))

]
≥ 0 (28)

Then, from Niemeyer’s derivation of posterior beliefs, we have the general approach, by

taking message subsets of positive measure M ′
−i ⊂ Mi and computing posterior beliefs as

follows:

Vi(θi|M ′
−i) =

∫
M ′

−i

Vi(θi|m−i)λ(dm−i|i,M ′
−i), (29)

where we define λ(·) as the distribution over ∆(Mi) induced by a given strategy profile σi(θ).

Explicitly, let M̃ ⊂M and define as:

λ(M̃) =

∫
Θ

σ(θ)[M̃ ]µ(dθ). (30)

We return to our particular two player environment, described concisely by the posterior
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optimality condition in (14). Using this derivation of posterior beliefs, we get:

∫ 1

0

[∫ 1

0

[αθi + (1− α)θj]

]∫ 1

0

σ(θ)µ(dθ)

[
ψ(σi(θi), σ−i(θ−i))− ψ(m̃i, σ−i(θ−i))

]
≥ 0 (31)

=⇒ 1

2

[
ψ(σi(θi), σ−i(θ−i))− ψ(m̃i, σ−i(θ−i))

]
≥ 0, (32)

which is simply a constant. This can be visaulized as a horizontal line through the origin

in the above diagrams. This fits neatly between the small acceptance region given by ex-

post implementation and the larger acceptance region given by Bayesian implementation, as

anticipated.

6.4.5 Private Posterior Equilibrium


