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Abstract

From Moulin’s classic 1980 result, we know that, under a single-peaked domain, the

Gibbard-Satterthwaite theorem can be sufficiently relaxed such that voters truthfully report

their best preferred alternative when the central authority elects the median-reported ‘peak.’

This well-studied result provides an initial framing for this paper. We consider a two period

election setting, where a policy is fixed in the first period. Agents report their ideal point

and a strength of preference parameter, which denotes how sharply their utility decreases in

movement to either direction of their ideal point. From this construction, we employ a mecha-

nism design setting without transfers to consider the set of social choice functions that can be

implemented in Bayesian-Nash equilibrium when agents are reporting this additional parame-

ter. Then, after establishing the set of implementable social choice functions in a setting that

does not allow transfers, we consider the same two period election setting where agents report

an ideal point and strength of preference parameter, now allowing for monetary transfers and

proceeding to characterize the set of social choice functions that are implementable in domi-

nant strategies when transfers are allowed. We conclude with a brief discussion of application,

namely considering how our results prove that it is in the best interest of party leaders and

policymakers to consider the strength of voter preferences in movements away from ideal points

and seek to give those with higher strength of preference parameters stronger sways over party

directions and policy decision-making.

Jel Classification: C72, C73, D72, D82.

Keywords: strategy proof mechanisms, voting games, political salience

∗I acknowledge funding from the Yale University Department of Economics, the Yale Institution for Social
and Policy Studies, and invaluable advisement from Adam Meirowitz and Dirk Bergemann. All errors are,
of course, my own.

†Yale University, justice.harasha@yale.edu.

1



Strategy-Proofness in Elections with Multidimensional Signals 2

Contents

1 Introduction 3

1.1 Relation to Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Classical Setting: Single-Dimensional Reporting 3

2.1 The Single-Dimensional Model . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Single Peakedness and Strategy-Proof Voting Schemes . . . . . . . . . . . . . 4

3 Introducing the Multidimensional Environment 6

3.1 A mechanism design problem . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 On the salience parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 A first-best benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Strategy-proofness in three agent settings . . . . . . . . . . . . . . . . . . . . 15

4 Second-Best Policy Implementation in the Multidimensional Environment 16

4.1 Second-Best Strategy-Proofness . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Appendix 18



Strategy-Proofness in Elections with Multidimensional Signals 3

1 Introduction

1.1 Relation to Literature

2 The Classical Setting: Single-Dimensional Report-

ing

In the forthcoming section, we familiarize the reader with the classic, single-dimensional

environment, where voters strictly report an ideal point, and nothing more. This environment

is well-studied, and the set of strategy-proof voting rules are characterized under appropriate

technical assumptions by Moulin (1980). We offer a brief reconstruction of this general model

and a summary of the main results unique to this environment, ultimately in an effort to

demonstrate the fashion in which our novel multidimensional reporting differs from this

classical construction.

2.1 The Single-Dimensional Model

Consider an environment with n agents and a set A of alternatives, or potential policies. We

index the set of agents as follows: i ∈ N = {1, 2, ..., N}. We can think of each agent i as

a voter and the set N as the electorate. Each voter i has a value or utility function, ui(θ),

where θ ∈ Θ is some unknown state. The state θ has n elements (θ1, θ2, ...θn) and each agent

i observes only θi, known as agent i’s type. In this setting, we refer to θi as voter i’s true

ideal point. Simply, it denotes a given voter’s truthfully preferred policy implementation over

the set of possible alternatives or policies A. We assume that an ideal point θi is some real

number drawn from a compact interval Θi, an interval that we normalize to [0, 1], without

loss of generality. This yields the following construction of the normalized state space:

Θ =
n∏
i=1

Θi = [0, 1]n. (1)
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We assume that states θ ∈ Θ are distributed according to a probability measure µ(·) ∈ ∆(Θ)

that it has a continuously differentiable and strictly positive density function f .

The designer introduces a mechanism to decide on the collective policy implementation.

We define a mechanism as the pair (M,ψ), where M is a collection of measurable message

spaces Mi and ψ is an outcome function given by the mapping ψ :M → [0, 1], which assigns

a policy choice for each message profile m ∈ M . In this setting, we call M the set of

announced ideal points and ψ a voting scheme. Together, the mechanism (M,ψ) induces a

game of incomplete information where voters attempt to maximize their expected utilities.

This completes our reconstruction of the classical setting, which we call the single-

dimensional model. We note that the single-dimensional aspect of the classical model arises

from the fact that voters announce a single number, their announced ideal point, and no

additional information is shared with the designer. In the next section, we revisit the main

results from Moulin (1980) that characterize the set of incentive compatible voting schemes

in this environment, and offer a strong basis upon which we build our multi-dimensional

construction.

2.2 Single Peakedness and Strategy-Proof Voting Schemes

The most exhaustive characterization of this single-dimensional setting is done by Moulin

(1980), who obtains the set of strategy-proof voting schemes in the classical environment,

under appropriate restrictions. We offer this result, but first orient the reader with the set

of restrictions on voter preferences and with formal notions of strategy-proof mechanisms.

To begin, Moulin assumes that for each voter i, their associated set of possible preferences

Ui is the set S of single-peaked preferences, which we define below:

Definition 1 A preference profile u is single-peaked if and only if there exists an alternative

a ∈ A, called the peak of u, such that for all x, y ∈ R

x ≤ y < a =⇒ u(x) ≤ u(y) < u(a)
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and

a < x ≤ y =⇒ u(a) > u(x) ≥ u(y)

It is important to note that we identify the preference preording u with any utility or value

function associated with it, as we initially defined u(·) Section 2.1.

From this notion of single-peakedness, we can offer the main solution concept that we

consider in the classical environment: strategy-proofness, which we offer in two distinct

definitions:

Definition 2 A voting rule ψ is strategy proof if for every agent i with single-peaked pref-

erence profile ui ∈ S and associated peak ai, we have

∀xi ∈ R, ∀x̄−i ∈ R(n−1) ui

(
ψ(ai, x̄−i)

)
≥ ui

(
ψ(xi, x̄−i)

)

where x̄−i ∈ R(n−1) is the (n− 1)-uple of peaks announced by all other agents.

From here, we also define the notion of group-strategy-proofness:

Definition 3 A voting rule ψ is group-strategy-proof if for every coaltion S ⊂ {1, ..., n} for

every preference profile (ui)i∈S ∈ SS with associated peaks aS = (ai)i∈S we have that:

∀xSC ∈ RSC ∃xS ∈ RS such that ∀i ∈ S

ui

(
ψ(xS, xSC )

)
> ui

(
ψ(aS, xSC )

)
Simply, strategy-proofness guarantees that no agent has an incentive to report a signal that

differs from his truthful, underlying peak, or type.

These are the primary notions of strategy-proofness that we will use in our review of

Moulin’s result in the classical single-dimensional environment as well in our forthcoming

considerations of voting schemes in the novel multi-dimensional environment. We offer

Moulin’s central result below, without proof, which completes our characterization of the



Strategy-Proofness in Elections with Multidimensional Signals 6

single-dimensional environment, and allows us to proceed to the multi-dimensional consid-

eration:

Theorem 1 (Moulin, 1980). The statements below are equivalent:

(i) The voting rule ψ : Rn → R is group-strategy-proof and the selected policy implemen-

tation is Pareto optimal.

(ii) There exist (n− 1) real numbers α1, ..., αn−1 ∈ R ∪ {+∞,−∞} such that

∀(x1, ..., xn) ∈ Rn ψ(x1, ..., xn) = m(x1, ..., xn, α1, ..., αn−1)

where we recall that m(x1, ..., xn, α1, ..., αn−1) refers to the median value.

Thus, from Moulin, we have a complete characterization of group-strategy-proof voting rules

in the single-peaked, classical environment. We will employ this result several times during

our characterization of the novel multivalued setting throughout Section 3.

3 Introducing the Multidimensional Environment

Suppose, now, that agents can report a multi-dimensional signal. That is, instead of simply

announcing their peak, or ideal point xi, agents report an additional parameter, say αi, that

captures the strength of their preference for their reported peak. We formalize this addition

to the classical setting by considering it in the form of a mechanism design problem.

3.1 A mechanism design problem

Consider an electorate composed of n = 2p + 1 agents, or voters. Each agent has a private

value θi ∈ [0, 1] × [γ, 1] := Θi, which is composed of her true peak ai and true salience

parameter, ᾱi which captures the strength of a given agent’s preference for their peak. That

is, an agent’s private value or true type is of the form θi := (ai, ᾱi). Agents then report a
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corresponding message mi ∈ [0, 1]× [γ, 1] :=Mi. Specifically, each agent i reports an ordered

pair of the form (xi, αi), where xi is agent i’s reported ideal point or announced peak and

αi is the agent’s reported salience parameter. The timing of the mechanism is similar to the

classical environment:

1. The designer, or policymaker, commits to the voting rule, which is given by the map-

ping ψ : Rn → R. The voting rule, in this case, is a measurable function that takes

inputs of the agents’ announced peaks and reported salience parameters, while out-

putting the selected policy implementation.

2. Agents announce their peaks (x1, ..., xn) and salience parameters (α1, ..., αn).

3. The designer collects these reports and enacts the voting rule ψ.

4. The outcome of the voting rule is selected as the implemented policy, x∗imp.

From this multivalued construction, the policy implementation selected by the designer’s

voting rule can be a reflection not only of agent peaks or ideal points, but additionally of

individualized preference intensities. In the next section, we provide a formal introduction to

this salience parameter and the smaller subset of preference profiles that we initially restrict

ourselves to.

3.2 On the salience parameter

We begin our analysis of the multivalued setting by restricting the our attention to a simple

case of preference intensity and the salience parameter αi. Suppose that we assume agent

preferences can be described by tent-shaped utility functions of the graphical form given

below:

where an inverted absolute value function describes how an agent’s announced peak corre-

sponds to their highest utility and that their utility decreases symmetrically in movements
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Agent i ideal point, xi

αi−αi

Figure 1: An arbitrary voter’s i simple utility function, centered at their ideal point xi (i.e.
agent i’s announced peak) with symmetric slopes given by αi.

away from this ideal point in either direction. This is, of course, a highly simplified consider-

ation of voter utility, but it nonetheless captures the intuition of strategy-proof voting rules

in the multivalued environment. In Section 7, we consider a more general class of single-

peaked preferences, namely quadratic utility functions. From here on, we call the general

function given in Figure 1 simple single-peaked (SSP). We offer a precise definition below:

Definition 4 A preference relation ui is called simple single-peaked (SSP) if it is of a sym-

metric tent shape centered at the agent’s ideal point, of the exact functional form:

ui(xi, αi) = −
∣∣∣∣αi(xi − x0)

∣∣∣∣.
where x0 is a constant which controls horizontal shifts of the tent-shaped utilities.

From this initial grounding in the simple multivalued environment, we proceed by first

considering a three agent direct mechanism setting. Later, we consider electorates of size

n ≥ 3 and indirect mechanisms.
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3.3 A first-best benchmark

Suppose that n = 3 and that the type space coincides with the message space (i.e. Θi =Mi).

That is, we are restricting our attention to direct mechanisms, considering only the case

where agents truthfully report their peak (ideal point) and salience parameter (xi, αi).

Thus, in a three-agent direct mechanism setting, we get the following three reports:

{
(x1, α1); (x2, α2); (x3, α3)

}
, (2)

where each of the pairs correspond to the given agent’s truthful peak and salience param-

eter. To aid in building some intuition in this modified multidimensional problem, we first

characterize a notion of aggregate welfare maximization. That is, this portion of our analysis

answers the very relaxed question: When the designer can observe the true ideal points and

salience parameters of the agents, what policy should she select?

Definition 5 A given alternative x∗FBWM is called first-best welfare-maximizing (FBWM)

if:

x∗FBWM ∈ arg max

{ n∑
i=1

ui(xi, αi)

}
. (3)

We proceed to characterize this notion in the three-agent setting. To do this, we offer

a more precise construction of the environment. Without loss of generality, let us suppose

that the follow ordering exists on the set of αi:

α1 ≥ α2 ≥ α3. (4)

This yields two distinct possibilities:

α1 ≥
n∑
i ̸=1

αi (5)
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or

α1 ≤
n∑
i ̸=1

αi. (6)

From (5) and (6), we arrive at a first result that begins our characterization of this environ-

ment:

Lemma 1 In a three-agent direct mechanism setting where (5) holds, the FBWM policy

selection is α1’s truthfully reported peak, x1, i.e.

ψ

[{
(x1, α1); (x2, α2); (x3, α3)

}]
= x1 = x∗FBWM (7)

is FBWM.

Proof. We proceed by contradiction. That is, suppose that (5) holds, but that x1 is not the

first-best welfare-maximizing policy selection. This means that there exists some alternate

policy selection, say x′, such that the following is true:

n∑
i=1

ui(x
′, αi) >

∑
i=1

ui(x1, αi) (8)

Explicitly, this yields:

u1(x
′, α1) + u2(x

′, α2) + u3(x
′, α3) > u1(x1, α1) + u2(x1, α2) + u3(x1, α3) (9)

By the simple single-peakedness of agent preferences, we know that the selection of x1 yields

the maximum value for voter 1’s utility. We rewrite (9) in accordance with this fact:

u1(x
′, α1) + u2(x

′, α2) + u3(x
′, α3) > max

{
u1(x1, α1)

}
+u2(x1, α2) + u3(x1, α3) (10)
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We reorganize terms as follows:

[
u1(x

′, α1)−max

{
u1(x1, α1)

}]
+

[
u2(x

′, α2)− u2(x1, α2)

]
+

[
u3(x

′, α3)− u3(x1, α3)

]
> 0

We then proceed with term-by-term analysis. Clearly:

[
u1(x

′, α1)−max

{
u1(x1, α1)

}]
< 0 (11)

since anything other than the maximum value is strictly less than the maximum value of a

SSP utility function. Further, by construction, we know:

[
u2(x

′, α2)− u2(x1, α2)

]
> 0, (12)

since we view x′ as a an policy selection closer to the ideal points of voters 2 and 3. From

this, we also get: [
u3(x

′, α3)− u3(x1, α3)

]
> 0 (13)

We can normalize each term by the difference in ideal points by the fact that zero is on the

right-hand side of the inequality, yielding:

u1(x
′, α1)−max

{
u1(x1, α1)

}
x′ − x1

+
u2(x

′, α2)− u2(x1, α2)

x′ − x1

+
u3(x

′, α3)− u3(x1, α3)

x′ − x1
> 0

Each term is clearly equivalent to the slope between two points on each respective voter’s

utility function, which we know is simply their salience parameter αi. Then, using the sign
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derived from (11), (12), and (13), we have:

−α1 + α2 + α3 > 0 (14)

=⇒ α2 + α3 > α1, (15)

which is a clear contradiction of (5). Thus, x1 is necessarily FBWM under the assumption

in (5), completing our argument.

We proceed to consider the counterfactual in this initial setting, described by (6). Namely,

we consider the question: What happens when the largest salience report is not all that much

bigger than the rest of the reports? We get the following result:

Lemma 2 In a three-agent direct mechanism setting where (6) holds, the FBWM imple-

mentation is α2’s truthfully reported peak x2 i.e.

ψ

[{
(x1, α1); (x2, α2); (x3, α3)

}]
= x2 = x∗FBWM (16)

Proof. We, once more, proceed by contradiction. That is, suppose (6) holds, but that

x2 is not first-best welfare-maximizing. This means that there exists some alternate policy

selection, say x′, such that the following is true:

n∑
i=1

ui(x
′, αi) >

n∑
i=1

ui(x2, αi) (17)

=⇒ u1(x
′, α1) + u2(x

′, α2) + u3(x
′, α3) > u1(x2, α1) + u2(x2, α2) + u3(x2, α3), (18)
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which we reorganize to yield:

[
u1(x

′, α1)− u1(x2, α1)

}]
+

[
u2(x

′, α2)− u2(x2, α2)

]
+

[
u3(x

′, α3)− u3(x2, α3)

]
> 0

From this arises two distinct cases:

(i) x′ is closer to the ideal point of voter 1 than x2, and x2 is closer to the ideal point of

voter 3

(ii) x′ is closer to the ideal point of voter 3 than x2, and x2 is closer to the ideal point of

voter 1

It is taken to be given that any ideal point other than x2 is less desirable than x2 for voter

2. From here, we consider the case described in (i). Since x′ is closer to the ideal point of

voter 1 than x2, we have: [
u1(x

′, α1)− u1(x2, α1)

}]
> 0. (19)

Further, since x2 is the maximum value of voter 2’s SSP utility, we have:

[
u2(x

′, α2)− u2(x2, α2)

]
< 0. (20)

Finally, by (i) we know that x2 is closer to the ideal point of voter 3, so we get:

[
u3(x

′, α3)− u3(x2, α3)

]
< 0. (21)

After repeating a similar normalization procedure performed in the proof of Lemma 1 and

the sign analysis performed in (19), (20), and (21), we get that:

α1 − α2 − α2 > 0 (22)
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=⇒ α1 > α2 + α3, (23)

which is a clear contradiction of (6), and thus means that x2 is FBWM in the case of (i).

We proceed to consider (ii). Since (ii) gives us the case where x2 is closer to the ideal

point of voter 2, we have: [
u1(x

′, α1)− u1(x2, α1)

}]
< 0. (24)

Since x2 is still the maximum value of voter 2’s SSP utility, (20) still holds. Finally, from

(ii), we have that x′ is closer to the ideal point of voter 3 than x2, so we have:

[
u3(x

′, α3)− u3(x2, α3)

]
> 0. (25)

Again, by normalization and sign analysis, we get a convenient result in terms of αi given

below:

−α1 − α2 + α3 > 0 (26)

=⇒ α3 > α1 + α2, (27)

which is a clear contradiction since we have the following order on the α values: α1 ≥ α2 ≥ α3,

and the inequality in (27) requires that the smallest salience parameter is greater than the

sum of the two larger salience parameters. Therefore, under (ii), x2 is also FBWM.

This thus completes our argument that x2 is FBWM under (6).

We have thus characterized the three-agent environment when the designer observes the

underlying types of each agent and can simply optimize the aggregation of their SSP util-

ities, in the two possible scenarios. In the forthcoming section, we proceed to consider an

environment of incomplete information, considering the notion of dominant-strategy incen-

tive compatibility, akin to Moulin’s notion of strategy-proofness, and obtain a complete

characterization of this setting with respect to that solution concept.
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3.4 Strategy-proofness in three agent settings

In the previous section, we were concerned fundamentally with a question of unconstrained

optimization: In the absence of any incentive compatibility constraints and endowed with

the ability to observe each agent’s true type, what should a policymaker or designer choose to

select? We return to a more classical question, now, which includes the previously discussed

notion of strategy-proofness. Suppose we are now interested in the implementation of a

policy that makes it such that no agent has an incentive to report an ideal point and salience

parameter that differs from her truthful, underlying type. In this way, we returnn to the

notion of strategy-proofness and specify a notion of this in our multidimensional setting:

Definition 6 A voting scheme ψ is called first-best strategy-proof (FBSP) if:

ψ(x, α) ∈ arg max

{ n∑
i=1

ui(xi, αi)

}
. (28)

and

∀xi ∈ R, ∀x̄−i ∈ R(n−1) ui

(
ψ(ai, x̄−i), αi

)
≥ ui

(
ψ(xi, x̄−i), αi

)
(29)

Simply, FBSP refers to the concept of the dominance of truth-telling as an optimal strategy.

In the following result, we show that such an implementation is impossible in the three-agent

multidimensional environment:

Theorem 2 In the three-agent environment, there exists no such FBSP voting scheme.

Proof. We proceed by contradiction. Suppose that there exists such a FBSP voting scheme

ψ, such that (28) and (29) are satisfied. From the results above, given in the case of the

unconstrained problem (i.e. the case where the designer observes the true, underlying types

of the voters), there are two possible solutions to (28). In the case where there is a single

αi report that satisfies: αi ≥
∑n

j ̸=i αj, where αi ≥ αj ≥ αk, we have shown that the welfare-

maximizing policy selection is xi. In the case case where αi ≥
∑n

j ̸=i αj, but αi ≤
∑n

j ̸=i αj,

we have shown that the welfare-maximizing policy selection is xj. Therefore, it is known in
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the three-agent setting that the first-best part of FBSP is only satisfied when xi or xj are the

implementations, depending on the size of the largest α report. More specifically, this means

that a FBSP voting scheme must select xi with some positive probability and xj with some

positive probability such that the designer’s objective function is maximized, as in (28).

This, however, means that there is an incentive for voters to misreport their α value,

such that they report a salience parameter that is larger than the sum of the values of the

salience parameters of their fellow agents, and thus ensure that their own ideal point is im-

plemented. In this way, we can note that strategy-proofness, as given in (29), cannot always

be satisfied when the designer’s objective function is maximized, since a welfare-maximizing

voting scheme creates an incentive for α-deviation. When incentive for α-deviation exists,

truth-telling is no longer a dominant strategy, and thus strategy-proofness does not hold.

4 Second-Best Policy Implementation in the Multidi-

mensional Environment

As was shown above, a notion of first-best strategy-proofness does not exist in the multidi-

mensional environment. Thus, in the forthcoming subsections, we will characterize a notion

of second-best implementation, considering both pointwise incentive compatibility constraints

(which is most representative of the classical strategy-proofness constraint) and introducing

a notion of Bayesian implementation. This will complete our characterization of this baseline

multidimensional environment, before we introduce multiple periods, additional agents, and

the prospect of transfers, which all work to alleviate the stringent equilibrium conditions of

the baseline environment.

4.1 Second-Best Strategy-Proofness

Our first consideration of second-best policy implementation is a notion of second-best

strategy-proofness, which we obtain by constraining the policymaker’s (principal) problem
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with pointwise incentive compatibility constraints. It is important to note that, while the

pointwise nature of the constraints imply that agents do not form beliefs about each other’s

reports in this initial notion of second-best optimality, the principal or policymaker still

forms beliefs about the aggregate expected payoff. This construction yields the following

constrained optimization problem in the three-agent setting:

Second-Best Maximization Problem 1 Assume that each component of every agent’s

multi-dimensional report (xi, αi) are i.i.d. draws from the uniform distribution on the interval

[0, 1], i.e. xi, αi
iid∼ U [0, 1], ∀i ∈ N . Further, let x = (x1, . . . , xn) and α = (α1, .., αn). From

this, we get the following policymaker’s optimization problem:

sup
ψ(·)

∫
[0,1]

2n. . .

∫
[0,1]

n∑
i=1

ui

(
xi, αi, ψ(x, α)

)
dx1dα1 . . . dxndαn (30)

subject to:

ui

[
xi, αi, ψ

(
(xi, αi), (x̄−i, ᾱ−i)

)]
≥ ui

[
xi, αi, ψ

(
(x′i, α

′
i), (x̄−i, ᾱ−i)

)]
, (31)

where (31) is the strategy-proofness condition that holds for all xi, αi, x
′
i, α

′
i ∈ R and for all

x̄−i, ᾱ−i ∈ Rn−1.

We begin our computation by evaluating and simplifying the objective function in (30).

Upon integration and specifying the explicit functional form for each i, we arrive at:

(32)
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5 Appendix


